16/32-Bit RISC Flash Microcontroller

The TMS470R1B768 2) device is a member of the Texas Instruments (TI) TMS470R1x family of general-purpose16/32-bit reduced instruction set computer (RISC) Microcontrollers The B768 Microcontroller offers high performance utilizing the high-speed ARM7TDMI 16/32-bit RISC central processing unit (CPU), resulting in a high instruction throughput while maintaining greater code efficiency. The ARM7TDMI 16/32-bit RISC CPU views memory as a linear collection of bytes numbered upwards from zero. The TMS470R1B768 utilizes the big-endian format where the most significant byte of a word is stored at the lowest numbered byte and the least significant byte at the highest numbered byte.
High-end embedded control applications demand more performance from their controllers while maintaining low costs. The B768 RISC core architecture offers solutions to these performance and cost demands while maintaining low power consumption.
The B768 device contains the following: ARM7TDMI 16/32-Bit RISC CPUTMS470R1x system module (SYS) with 470+ enhancements [including an interrupt expansion module (IEM) and a 16-channel direct-memory access (DMA) controller]768K-byte flash48K-byte SRAMZero-pin phase-locked loop (ZPLL) Clock moduleAnalog watchdog (AWD) timerReal-time interrupt (RTI) moduleFive serial peripheral Interface (SPI) modulesTwo serial Communications Interface (SCI) modulesThree high-end CAN controller (HECC) modules10-bit multi-buffered Analog-to-digital converter (MibADC) with 16 input channelsHigh-end Timer (HET) controlling 32 I/OsExternal Clock prescale (ECP) moduleUp to 86 I/O pins and 1 input-only pin
The functions performed by the 470+ system module (SYS) include: Address decodingMemory protectionMemory and peripherals bus supervisionReset and abort exception managementExpanded interrupt capability with prioritization for all internal interrupt sourcesDevice Clock controlDirect-memory access (DMA) and controlParallel signature analysis (PSA)
This data sheet includes device-specific information such as memory and peripheral select assignment, interrupt priority, and a device memory map. For a more detailed functional description of the SYS module, see the TMS470R1x System Module Reference Guide (literature number SPNU189). For a more detailed functional description of the IEM module, see the TMS470R1x Interrupt Expansion Module (IEM) Reference Guide (literature number SPNU211). And for a more detailed functional description of the DMA module, see the TMS470R1x Direct-Memory Access (DMA) Controller Reference Guide (literature number SPNU210).
The B768 memory includes general-purpose SRAM supporting single-cycle read/write accesses in byte, half-word, and word modes.
The Flash memory on this device is a nonvolatile, electrically erasable and programmable memory implemented with a 32-bit-wide data bus Interface The Flash operates with a system Clock frequency of up to 24 MHz. When in pipeline mode, the Flash operates with a system Clock frequency of up to 60 MHz. For more detailed information on the F05 devices Flash see the F05 Flash section of this data sheet.
The B768 device has ten Communication interfaces: five SPIs, two SCIs, and three HECCs. The SPI provides a convenient method of serial interaction for high-speed Communications between similar shift-register type devices. The SCI is a full-duplex, serial I/O Interface intended for asynchronous Communication between the CPU and other peripherals using the standard Non-Return-to-Zero (NRZ) format. The HECC uses a serial, multimaster Communication protocol that efficiently supports distributed real-time control with robust Communication rates of up to 1 megabit per second (Mbps). The HECC is ideal for applications operating in noisy and harsh environments (e.g., industrial fields) that require reliable serial Communication or multiplexed wiring. For more detailed functional information on the SPI, SCI, and HECC, see the specific reference guides for these modules (literature numbers SPNU195, SPNU196, and SPNU197, respectively).
The HET is an advanced intelligent Timer that provides sophisticated Timing functions for real-time applications. The Timer is software-controlled, using a reduced instruction set, with a specialized Timer micromachine and an attached I/O port. The HET CAN be used for compare, capture, or general-purpose I/O. It is especially well suited for applications requiring multiple Sensor information and drive actuators with complex and accurate time pulses. For more detailed functional information on the HET, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199).
The B768 HET peripheral contains the XOR-share feature. This feature allows two adjacent HET high-resolution channels to be XORed together, making it possible to output smaller pulses than a standard HET. For more detailed information on the HET XOR-share feature, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199).
The B768 device has a 10-bit-resolution, 16-channel sample-and-hold MibADC. The MibADC channels CAN be converted individually or CAN be grouped by software for sequential conversion sequences. There are three separate groupings, two of which are triggerable by an external event. Each sequence CAN be converted once when triggered or configured for continuous conversion mode. For more detailed functional information on the MibADC, see the TMS470R1x Multi-Buffered Analog-to-digital Converter (MibADC) Reference Guide (literature number SPNU206).
The zero-pin phase-locked loop (ZPLL) Clock module contains a phase-locked loop, a clock-monitor circuit, a clock-enable circuit, and a prescaler (with prescale values of 1-8). The function of the ZPLL is to multiply the external frequency reference to a higher frequency for internal use. The ZPLL provides ACLK to the system (SYS) module. The SYS module subsequently provides system Clock (SYSCLK), real-time interrupt Clock (RTICLK), CPU Clock (MCLK), and peripheral Interface Clock (ICLK) to all other B768 device modules. For more detailed functional information on the ZPLL, see the TMS470R1x Zero-Pin Phase-Locked Loop (ZPLL) Clock Module Reference Guide (literature number SPNU212).
NOTE: ACLK should not be confused with the MibADC internal Clock ADCLK. ACLK is the continuous system Clock from an external Resonator crystal reference.
The B768 device also has an external Clock prescaler (ECP) module that when enabled, outputs a continuous external Clock (ECLK) on a specified GIO pin. The ECLK frequency is a user-programmable ratio of the peripheral Interface Clock (ICLK) frequency. For more detailed functional information on the ECP, see the TMS470R1x External Clock Prescaler (ECP) Reference Guide (literature number SPNU202).
By Texas Instruments
Part Manufacturer Description Datasheet Samples
TMS470R1B768PGET Texas Instruments 16/32-Bit RISC Flash Microcontroller 144-LQFP
TMS470R1B768 's PackagesTMS470R1B768 's pdf datasheet
TMP470R1B768PGE LQFP
TMS470R1B768PGET LQFP




TMS470R1B768 Pinout, Pinouts
TMS470R1B768 pinout,Pin out
This is one package pinout of TMS470R1B768,If you need more pinouts please download TMS470R1B768's pdf datasheet.

TMS470R1B768 circuits will be updated soon..., now you can download the pdf datasheet to check the circuits!

Related Electronics Part Number

Related Keywords:

TMS470R1B768 Pb-Free TMS470R1B768 Cross Reference TMS470R1B768 Schematic TMS470R1B768 Distributor
TMS470R1B768 Application Notes TMS470R1B768 RoHS TMS470R1B768 Circuits TMS470R1B768 footprint